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Equations are derived and discussed that allow the computation of zero-field splitting (ZFS) tensors in transition
metal complexes for any value of the ground-state total spinS. An effective Hamiltonian technique is used and
the calculation is carried to second order for orbitally nondegenerate ground states. The theory includes contributions
from excited states of spinS and S ( 1. This makes the theory more general than earlier treatments. Explicit
equations are derived for the case where all states are well described by single-determinantal wave functions, for
example restricted open shell Hartree-Fock (HF) and spin-polarized HF or density functional (DFT) calculation
schemes. Matrix elements are evaluated for many electron wave functions that result from a molecular orbital
(MO) treatment including configuration interaction (CI). A computational implementation in terms of bonded
functions is outlined. The problem of ZFS in high-spin ferric complexes is treated at some length, and contributions
due to low-symmetry distortions, anisotropic covalency, charge-transfer states, and ligand spin-orbit coupling
are discussed. ROHF-INDO/S-CI results are presented for FeCl4

- and used to evaluate the importance of the
various terms. Finally, contributions to the experimentally observed reduction of the metal spin-orbit coupling
constants (the relativistic nephelauxetic effect) are discussed. B3LYP and Hartree-Fock calculations for FeCl4

-

are used to characterize the change of the iron 3d radial function upon complex formation. It is found that the
iron 3d radial distribution function is significantly expanded and that the expansion is anisotropic. This is interpreted
as a combination of reduction in effective charge on the metal 3d electrons (central field covalence) together with
expansive promotion effects that are a necessary consequence of chemical bond formation. The〈r-3〉3d values
that are important in the interpretation of magnetic data are up to 15% reduced from their free-ion value before
any metal-ligand orbital mixing (symmetry-restricted covalency) is taken into account. Thus the use of free-ion
values for spin-orbit coupling and related constants in the analysis of experimental data leads to values for MO
coefficients that overestimate the metal-ligand covalency.

1. Introduction

Transition metal complexes play important roles as catalysts
in the active sites of metalloenzymes and in industrial processes.1

In many cases high-resolution crystal structures for the sites
are not available, and spectroscopic studies are relied upon to
provide structural information. This is especially important for
the study of reaction intermediates. Complementary to crystal-
lography, spectroscopic techniques provide information about
the electronic structures of the sites which are intimately linked
to their reactivities.2 To maximize the amount of information
obtained from spectroscopic studies, theoretical models are
required that connect the active site geometric and electronic
structure to the observed spectra.

Since transition metal complexes are frequently paramagnetic,
a great deal of information is obtainable from magnetic
spectroscopies such as EPR, ENDOR, ESEEM, MCD, ODMR,
and Mössbauer spectroscopy.3 All of these methods are sensitive

to the magnetic properties of the electronic-ground state
configuration. Traditionally, the splittings of the ground con-
figuration sublevels are described by a spin Hamiltonian (SH)
which introduces an effective spinS of the state under
consideration and absorbs the spatial degrees of freedom into a
small set of numerical parameters.4,5 In this way the data analysis
is divided into two steps: fitting SH parameters to experimental
spectra and their interpretation using an appropriate theoretical
method. The second step is frequently not carried out, and many
empirical relations for the SH parameters have been used to
great advantage by experimentalists (i.e., ref. 6). However, this
step is required if the goal of the investigation is a detailed
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electronic structure description of the compound under inves-
tigation and is the focus of this paper.

The SH was first introduced by Abragam and Pryce7 in the
context of crystal field theory (CFT) and elaborated by others.8

In analyzing experimental results, it has generally been found
that spin-orbit coupling (SOC) constants that are reduced from
the value of the free ion are required, and this has been called
the relativistic nephelauxetic effect9 because the spin-orbit
coupling effect is relativistic in origin and the reduction could
be explained by an expansion of the metal-radial probability
distribution function.9 Detailed accounts of these developments
are available10,11 and are still used in the ligand field theory
and angular overlap approaches.12

On the basis of the nephelauxetic effect and the observation
of ligand hyperfine interactions,13 it became clear that metal-
ligand covalency should be accounted for in more detail, and
molecular orbital (MO) models were developed forg-values,
hyperfine couplings,14 and ZFSs.14d,15Importantly, the combined
experimental and theoretical study of the ZFS in high-spin ferric
complexes16-18 showed that Griffith’s model19 predicts the
wrong sign for the ZFS in the case of FeCl4

- and that this can
be traced back to the differential convalencies of the predomi-
nantly Fe-3d MOs, thus underlining the importance of an explicit
consideration of covalency.

The question arises of how the spin Hamiltonian parameters
can be calculated in the general case where no specific
approximation (MO, valence bond, ligand field, etc.) to the
nonrelativistic many-electron wave functions is assumed. This

problem has been analyzed by several authors,20-22 but applica-
tions of these theories to transition metal complexes are scarce.
McWeeny has developed a transparent approach to the calcula-
tion of g-values and ZFSs.20 However, his results only include
the case where spin-orbit coupling occurs between states of
the same spin.20 This restriction is unsatisfactory for many
applications and especially for the ZFSs of high-spin ferric
complexes where the SOC between the ground sextet and low
lying excited state quartet states makes a major contribution to
the ZFS.16-19

Therefore an extension of McWeeny’s treatment is necessary
and is developed in sections 2.1-2.4 of this paper. Readers not
interested in the derivation can proceed directly to the results
in eqs 16, 18, 30, and 31. In sections 2.5 and 2.6 the numerical
implementation in terms of MO and CI wave functions is
presented. On the basis of these developments, the ZFSs of high-
spin ferric complexes are analyzed in section 3 and contributions
due to low-symmetry ligand field splittings, anisotropic cova-
lency, charge-transfer states, and ligand spin-orbit coupling are
identified (section 3.1). The various contributions are then
evaluated through INDO/S-CI calculations for the specific case
of FeCl4- (section 3.2). This complex was chosen as a
representative for high-spin ferric systems with axial ZFS,
because (1) it is a relatively simple, high-symmetry system, (2)
it has been intensely studied at the single-crystal level with
ground- and excited-state spectroscopies and the second- and
fourth-order contributions to the observed ZFS have been
experimentally determined,16,17 and (3) the origin of the ZFS
in this complex has been analyzed in detail.16,17

It is commonly assumed that the free-ion SOC constants
obtained from atomic spectroscopy are suitable to calculate
g-matrices andD-tensors. However, these constants depend on
the radial distribution function of the metal and ligand orbitals
involved in bonding, and the changes of these radial functions
upon complex formation have received little attention. Therefore
section 4 of the paper evaluates the changes in the metal 3d
radial distribution functions for the special case of FeCl4

- using
the Hartree-Fock and B3LYP electronic structure methods.
Finally, the connection to ligand-field models is developed
(section 4.3), and the contributions to the total reduction in the
apparent metal spin-orbit coupling are discussed (section 4.4).

2. Theory

In the absence of nuclear spins and exchange interactions,
the spin Hamiltonian up to terms bilinear in the effective spin
is usually written4

whereâB is the Bohr magneton,BB is the magnetic flux density,
SB is the operator for the effective spin, andg and D are the
g-matrix and the ZFS-tensor, respectively.Hspin acts on the basis
functions|SM〉 with M ) S, S- 1, ...,-S. If a coordinate system
is chosen that diagonalizesD, HZFS can be rewritten:

A constant1/3(Dxx + Dyy + Dzz)S(S+ 1) is dropped because it
shifts all levels equally, and the factor-1/3DS(S + 1) is
introduced for convenience. In a proper coordinate systemx, y,
and z are chosen such that 0e E/D e 1/3.23,24 Note that in
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Hspin ) HZe + HZFS (1)

) âBBBgSB + SBDSB

HZFS) D[Sz
2 - 1/3S(S+ 1)] + E[Sx

2 - Sy
2] (2)

D ) Dzz- 1/2(Dxx + Dyy); E ) 1/2(Dxx - Dyy) (3)
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generalDxx + Dyy + Dzz * 0; the D-tensor is not in general
traceless, as is sometimes stated.

2.1. Origin of Spin Hamiltonian Parameters.To connect
g andD with exact or approximate eigenfunctions of the Born-
Oppenheimer (BO) Hamiltonian, an effective Hamiltonian
technique is used.20,25An orthonormal set of many-electron wave
functions{|RSRM〉} is assumed, whereR is a compound label
that contains all necessary quantum numbers exceptSR andM,
the total spin of stateR, and its projection onto thez-axis (M )
SR, SR - 1, ...,-SR). The set of states is assumed to diagonalize
the BO Hamiltonian, i.e.,HBO|RSRM〉 ) ER|RSRM〉, and states
are labeled in order of increasing energy. SinceHBO commutes
with theS2 operator,SR andM are good quantum numbers. The
full Hamiltonian is taken to be

whereH1 ) HSOC + HZE. HZE is the Zeeman operator;HSOC

the SOC operator (see below). In the effective Hamiltonian
approach, the set of states is divided intoa- andb-sets. In the
present treatment it is required that the ground state is only spin-
degenerate; that is, thea-set contains 2Sa + 1 functions|aSaM〉,
while theb-set contains all other functions. The goal is to absorb
the effect of theb-set on thea-set states into a small set of
numerical parameters so that the matrix of the effective
Hamiltonian,Heff, in the basis of the perturbeda-set functions
can be identified with the matrix of the spin Hamiltonian.
Following McWeeny,20 one obtains for the matrix elements of
the effective Hamiltonian

where∆b ) Eb - Ea, a positive quantity, andEa is conveniently
set to zero. The connection to the spin Hamiltonian formalism
is made by requiring that the matrix elements〈aSaM|Heff|aSaM′〉
are equal to〈SM|Hspin|SM′〉. With the present choice ofH1, the
first-order contribution to theg-matrix is a diagonal matrix with
elementsge, the free electrong-value, while there is no
contribution to theD-tensor. It is well-known that the direct
spin-spin dipolar interaction gives a traceless first-order
contribution to theD-tensor.20,26For transition metal complexes
it is usually assumed that the second-order contribution to the
D-tensor, which originates from SOC, is dominant,5,14dand this
is the focus of the present paper. Theg-matrix will be written
g ) ge1 + ∆g, where1 is a 3× 3 unit matrix.

2.2. Spin-Orbit Coupling. The SOC operator in the Breit-
Pauli approximation is composed of one- and two-electron
contributions and is relatively difficult to handle even in the
case of atoms.27 The usual approach for molecules is to
approximateHSOCby an effective one-electron operator of the
form28

whereA sums over all nuclei,lBA(i) is the angular momentum of
electroni relative to atomA, sb(i) is the spin operator for theith
electron, andê(riA) is a radial operator that is proportional to
the inverse third power of the distance of electroni to nucleus
A (riA ) |rbi - RBA|; RBA is the position of theAth nucleus). In
atomic units29

whereR is the fine structure constant (≈1/137),sm is a standard
component of the spin vector operator (m ) -1, 0, 1), andh-m

is a standard component of a reduced spin-orbit vector operator.
Note that this form ofH′SOC assumes a spherically symmetric
electric field around each nucleus.

Sincesb(i) is of type T10 with respect to the total spinSB )
∑isb(i), one can apply the Wigner-Eckhard theorem to each
operator of the form∑if(i) sm(i):20

where

is a Clebsch-Gordon coefficient (CGC).31 Any component
h-m(i) can be substituted forf(i), and one obtains

whereYab
SaSb(-m) denotes a reduced matrix element. The same

equation in terms of density functions was given by McWeeny,20b

and a closely analogous equation but with inclusion of the spatial
symmetry contained in the vector operatorh-m by Griffith.30

Since most of our future applications will be to systems with
little or no symmetry, we disregard the spatial symmetry and
use eq 9. The selection rules contained in the CGCs requireSa

- Sb ) 0, (1, and the reduced matrix elements are calculated
for the standard states withM ) S, giving

(25) Löwdin, P.O. InPertubation Theory and its Applications in Quantum
Mechanics; Wilcox, C. H., Ed.; John Wiley and Sons Inc.: New York,
1966; pp 255ff.
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to Applied Quantum Chemistry; Holt, Rinehart, and Winston Inc.: New
York, 1972. (c) Misetich A. A.; Buch T.J. Chem. Phys.1964, 41 (8),
2524.
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Abegg, P. W.; Ha, T. K.Mol. Phys.1974, 27 (3), 763. (c) Pasternak,
R.; Wagniere, G.J. Comput. Chem.1981, 2 (3), 347. (d) Koseki, S.;
Schmidt, M. W.; Gordon, M. S.J. Chem. Phys.1992, 96, 10768. (e)
Langhoff, S. R.J. Chem. Phys.1974, 61, 1708. (f) Cohen, J. S.; Wadt,
W. R.; Hay, P. J.J. Chem. Phys.197971, 2955.

(30) Griffith, J. S.The Irreducible Tensor Method for Molecular Symmetry
Groups; Prentice-Hall Inc.: Englewood Cliffs, NJ, 1962.

(31) Rose, M. E.Elementary Theory of Angular Momentum; Dover
Publications Inc.: New York, 1957.

(32) Lushington, G. H.; Grein, F.Theor. Chim. Acta1996, 93, 259.
(33) Ditchfield, R.Mol. Phys.1974, 27(4), 789.

H ) HBO + H1 (4)

〈aSaM|Heff|aSaM′〉 ) EaδMM′ + 〈aSaM|H1|aSaM′〉

- ∑
bM′′

∆b
-1〈aSaM|H1|bSbM′′〉〈bSbM′′|H1|aSaM′〉 (5)

H′SOC) ∑
i
∑
A

ê(riA) lBA(i) sb(i) ) ∑
m

(-1)m∑
i

h-m(i) sm(i) (6)

ê(| rbi - RBA|) ) R2

2

Zeff
A

| rbi - RBA|3
(7)

〈aSaM|∑
i

f(i) sm(i)|bSbM′〉 ) (Sb 1 Sa

M′ m M)〈aSa||∑
i

f(i)||bSb〉

(8)

(Sb 1 Sa

M′ m M)

〈aSaM|H′SOC|bSbM′〉 ) ∑
m

(-1)m(Sb 1 Sa

M′ m M)Yab
SaSb(-m) (9)
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The part of the second-order contribution, eq 5, that contains
H′SOC twice is

where it is understood that the sum includes only the terms with
Sb ) Sa + k (k ) 0, (1). By inserting the appropriate matrix
elements, the connection to the matrix elements ofHZFS,

can now be made (hereDmm′ is an element of theD-tensor in
spherical components). Three cases need to be distinguished,
relating toSa - Sb ) 0, (1.

2.3. Contributions with Sb ) Sa. Insertion of eqs 9 and 10
into 13 yields

By comparing eqs 14 and 15, one obtains after switching back
to Cartesian indices (p, q ) x, y, z)

which is McWeeny’s result,20 using the Zeeman operator in the
form

The parts of the second-order energy that contain the products
of matrix elements ofH′SOC andHZE yield theg-shift as20

It is important to point out that the Zeeman operator has no
matrix elements between states of different multiplicity (fora
* b) and therefore to second order theg-matrix unlike the
D-tensor contains no contributions from states with a total spin
different from that of the ground state. This appears not generally
to be recognized, as many treatments relate both theD- and the
g-matrix to a common tensorΛ. As discussed in the litera-
ture,5d,14,20,21,32the evaluation of the orbital angular momentum
matrix elements introduces a variance with respect to the choice
of origin. Numerical calculations suggest that the effects are
small if the center of charge is taken as origin.32 Alternatively,
gauge invariant angular momentum operators can be defined20

or field-dependent atomic orbitals used (for example see ref 33
and references therein).

2.4. Contributions from States with Sb ) Sa ( 1. The
importance of contributions of this type to ZFSs has been clearly
recognized in the case of Cr(III)15 and6S ground-state ions.10,16,17,19

It is not obvious that the pertubation sumTMM′
(k) (k ) (1) has

the sameMM′ and mm′ dependence as eq 14 whenSb * Sa.
This however is the requirement for being able to write down
a SH that is bilinear in the spin operators. Griffith8c,10has shown
that this is possible, but his result was not in the standard form
of eq 1. In this section aD-tensor in standard form is obtained.
To proceed definedmm′

b

Consider first

The selection rule is contained in the last sum. For the first
CGC it is M′′ + m ) M and for the secondM′ + m′ ) M′′.
These are the same selection rules as for the caseSa ) Sb.
However, the numerical value of the CGC is different in the
present case, and a proportionality to the spin-only matrix
elements of the form〈SM|Sm|SM′〉 is not immediately evident.
Consider a matrix element〈SM|HZFS|SM - 2〉 of the spin
Hamiltonian:

Alternatively, the pertubation sum gives

Y ab
SaSa(-m) )

xSa(Sa + 1)

Sa

〈aSaSa|∑
i

h-m(i) s0(i)|bSaSa〉 (10)

Y ab
SaSa+1(-m) )

x2Sa + 3

2Sa + 1
〈aSaSa|∑

i

h-m(i) s-1(i)|b(Sa + 1)(Sa + 1)〉 (11)

Y ab
SaSa-1(-m) )

〈aSaSa|∑
i

h-m(i) s+1(i)|b(Sa - 1)(Sa - 1)〉 (12)

T MM′
(k) ) -∑

bM′′
∆b

-1〈aSaM|H′SOC|bSbM′′〉〈bSbM′′|H′SOC|aSaM′〉

(13)

〈SM|HZFS|SM′〉 ) ∑
m,m′

(-1)m+m′ Dmm′∑
M′′

〈SM|Sm|SM′′〉 ×

〈SM′′|Sm′|SM′〉 (14)

T MM′
(0) ) -∑

m,m′
(-1)m+m′∑

b

∆b
-1Yab

SaSa(-m)Yba
SaSa(-m′) ×

∑
M′′

(Sa 1 Sa

M′′ m M)(Sa 1 Sa

M′ m′ M′′ ) (15)

) -
1

Sa
2
∑
m,m′

(-1)m+m′∑
b

∆b
-1 ×

〈aSaSa|∑
i

h-m(i) s0(i)|bSbSb〉〈bSbSb|∑
i

h-m′(i) s0(i)|aSaSa〉 ×

∑
M′′

〈SaM|Sm|SaM′′〉〈SaM′′|Sm′|SaM′〉

Dpq
(0) ) -

1

Sa
2
∑

b

δSaSb
∆b

-1〈aSaSa|∑
A,i

ê(riA) lA,p(i) s0(i)|bSbSb〉 ×

〈bSbSb|∑
A,i

ê(riA) lA,q(i) s0(i)|aSaSa〉 (16)

HZE ) âB∑
i

BB( lB(i) + gesb(i)) (17)

∆gpq ) -
1

Sa
∑

b

∆b
-1δSaSb

{〈aSaSa|∑
i

lp(i)|bSbSb〉

〈bSbSb|∑
i,A

ê(riA) lA,q(i) s0(i)|aSaSa〉

+ 〈aSaSa|∑
i,A

ê(riA) lA,p(i) s0(i)|bSbSb〉〈bSbSb|∑
i

lq(i)|aSaSa〉}

(18)

dmm′
b ) -∆b

-1Yab
SaSb(-m) Yba

SbSa(-m′) (19)

T MM′
(1) ) ∑

m,m′
(-1)m+m′∑

b

dmm′
b ∑

M′′
(Sa + 1 1 Sa

M′′ m M) ×

(Sa 1 Sa + 1
M′ m′ M′′ ) (20)

〈SM|HZFS|SM- 2〉 )
1/2x(S- M + 1)(S+ M) x(S- M + 2)(S+ M - 1)D11

(21)
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Thus, theM dependence of the two matrix elements is the same,
and it can therefore be concluded that they will be numerically
equivalent if it is defined

The same proportionality is readily established forD-1-1
(1) , D01

(1),
D10

(1), D0-1
(1) , andD-10

(1) . Next, consider a diagonal element of the
spin Hamiltonian:

The perturbation sum gives

Now the average of all eigenvalues of the SH is subtracted from
each diagonal element. By means of the diagonal sum rule this
average is equal to the average of the sum of the diagonal
elements. Using

the corrected diagonal elements of the spin Hamiltonian become

The term linear inM cancels. For the perturbation sum the
equivalent average is

Subtracting this from any diagonal element and taking into
account the definition of the reduced matrix elements eqs 10-
12, it is concluded that the contribution from states withSb )
Sa + 1 to theD-tensor is given by

where againp andq refer to the Cartesian components of the
D-tensor. Repeating the process for excited states withSb ) Sa

- 1 results in the following contribution to theD-tensor

Summing up, the second-order contributions to the ZFS tensor
from SOC are given by

with the individual contributions given by eqs 16, 30, and 31.
2.5. Formulation in Terms of Molecular Orbitals. Having

obtained general expressions for the elements of theD- and
g-matrices, it remains to specify approximations to the many-
electron wave functions appearing in eqs 16, 18, 30, and 31 in
order to perform actual calculations. In this and in the next
section we discuss two standard choices, namely, single
determinants and CI type wave functions.

2.5.1. Spin-Restricted Determinants.The most elementary
case is when all states{|RSRM〉l} can be expressed as single
Slater determinants. This is the case for certain restricted open
shell HF (ROHF) solutions and related methods. If a wave
function for spinS can be represented by a single normalized
Slater determinant (denoted as|...|) with n doubly andm singly
occupied orbitals, it is of the high-spin type:34

An excited state in which an electron is promoted from a doubly
occupied into one of the singly occupied MOs is also an

(34) ψh is an orbital that is occupied by a spin-down electron, whileψ is
occupied by a spin-up electron.

T MM-2
(1) ) ∑

b

d11
b (Sa + 1 1 Sa

M - 1 1 M )(Sa 1 Sa + 1
M - 2 1 M - 1) (22)

) ∑
b

d11
b 1

x2

×

x(Sa + M)(Sa + M - 1)(Sa - M + 1)(Sa - M + 2)

x(Sa + 1)(2Sa + 1)(2Sa + 2)(2Sa + 3)

D11
(1) )

x2

x(Sa + 1)(2Sa + 1)(2Sa + 2)(2Sa + 3)
∑

b

d11
b (23)

〈SM|HZFS|SM〉 ) M2D00 - 1/2(S- M)(S+ M + 1)D-11 -
1/2(S+ M)(S- M + 1)D1-1 (24)

TMM
(1) ) ∑

b

d00
b (Sa + 1 1 Sa

M 0 M )(Sa 1 Sa + 1
M 0 M )+

d-11
b (Sa + 1 1 Sa

M + 1 -1 M )(Sa 1 Sa + 1
M 1 M + 1)+

d1-1
b (Sa + 1 1 Sa

M - 1 1 M )(Sa 1 Sa + 1
M -1 M - 1) (25)

)
x2

x(Sa + 1)(2Sa + 1)(2Sa + 2)(2Sa + 3)

×

∑
b

(Sa + M + 1)(Sa - M + 1)d00
b + 1/2(Sa + M + 1)(Sa +

M + 2)d-11
b + 1/2(Sa - M + 1)(Sa - M + 2)d1-1

b

1

2S+ 1
∑

M)-S

S

M2 ) 1/3S(S+ 1) (26)

1

2S+ 1
∑

M)-S

S

-1/2(S- M)(S( M + 1) ) -1/3S(S+ 1) (27)

〈SM|HZFS|SM〉 -
1

2S+1
∑

M′)-S

S

〈SM|HZFS|SM〉 )

[M2 - 1/3S(S+ 1)][D00 + 1/2D1-1 + 1/2D-11] (28)

1

2Sa + 1[ ∑
M)-Sa

Sa (Sa + 1 1 Sa

M 0 M )(Sa 1 Sa + 1
M 0 M )∑

b

d00
b

+ ∑
M)-Sa

Sa (Sa + 1 1 Sa

M - 1 1 M )(Sa 1 Sa + 1
M -1 M - 1)∑

b

d1-1
b

+ ∑
M)-Sa

Sa (Sa + 1 1 Sa

M + 1 -1 M )(Sa 1 Sa + 1
M 1 M + 1)∑

b

d-11
b ] )

-
1

3x2Sa + 3

2Sa + 1
[∑

b

d00
b + d-11

b + d1-1
b ] (29)

Dpq
(1) ) -

1

(Sa + 1)(2Sa + 1)
×

∑
b

δSbSa+1∆b
-1〈aSaSa|∑

i,A

ê(riA) lA,p(i) s-1(i)|bSbSb〉 ×

〈bSbSb|∑
i,A

ê(riA) lA,q(i) s+1(i)|aSaSa〉 (30)

Dpq
(-1) ) -

1

Sa(2Sa - 1)
×

∑
b

δSbSa-1∆b
-1〈aSaSa|∑

i,A

ê(riA) lA,p(i) s+1(i)|bSbSb〉 ×

〈bSbSb|∑
i,A

ê(riA) lA,q(i) s-1(i)|aSaSa〉 (31)

Dpq ) Dpq
(0) + Dpq

(1) + Dpq
(-1) (32)

|0SS〉 ) |ψ1ψh 1 ... ψnψh nψo1
... ψom

| (33)

6572 Inorganic Chemistry, Vol. 37, No. 26, 1998 Neese and Solomon



eigenfunction toS2 andSz with the same eigenvalues:

Likewise, if an electron is promoted from one of the singly
occupied orbitals into an empty orbital, a single-determinant
spin eigenfunction is obtained:

The case where an electron is promoted from a doubly occupied
into an empty orbital is more complicated because it leads to
several states of the same multiplicity as well as states of
different multiplicities. The same is true for spin-flip states in
which an electron is promoted from one of the singly occupied
orbitals into another singly occupied orbital with an accompany-
ing spin flip. These excitations give rise to several states of
lower multiplicity than the ground state. In the latter two cases
proceeding on a case by case basis is probably best. However,
general conclusions can be drawn for the two types of excited-
state wave functions in eqs 34 and 35. These wave functions
are not in general accurate descriptions of the actual states, as
they neglect excited-state electronic relaxation. They are useful
however from a conceptional point of view as they link physical
observables to individual MOs. Using Slater’s rules20,35 in eq
16 gives

For real MOs these two matrix elements are purely imaginary
and hermitian. Therefore the contributions of these two types
of excited states to theD-tensor become

where Lh1p
ij ≡ Im(〈ψi|∑Aê(rA)lA,p|ψj〉). Note thatLh1p

ij ) -Lh1p
ji .

Using the same matrix elements, theg-matrix becomes

where Lh2p
ij ≡ Im(〈(ψi|lp|ψj〉). The positive sign for the first

contribution arises from thes0 term in the SOC operator. This
is related to the fact that in order to create an excited state
|Ii

ojSS〉 a spin-down electron must be excited, while in order to
create an excited state|II oj

aSS〉 a spin-up electron is excited.
This accounts for the fact that d1 systems have negativeg-shifts
while d9 systems have positiveg-shifts as long as only d-d
transitions contribute to theg-shift (no low lying charge-transfer

states). The same sign change does not occur for theD-tensor
because each term in eq 16 containss0 twice.

2.5.2. Spin-Polarized Determinants.In a spin-polarized
bonding scheme (spin-unrestricted DFT or HF) the ground-state
determinant is written

whereR refers to spin-up andâ to spin-down electrons. Excited
states are formed by replacing occupied spin-up or spin-down
MOs with virtual MOs of the same spin:

and

Using these excited states, one first calculates the analogues of
eqs 36 and 37 and then inserts into eqs 16 and 18 to obtain

and

Excitations from spin-up to spin-down MOs cannot easily be
incorporated into the calculations because they would lead to
nonorthogonal configurations. The problem with this approach
is that the valueS of the total spin is ill defined because the
determinants in eqs 40, 41, and 42 are not spin eigenfunctions35

and spin contamination may be much larger in the excited states
than in the ground state.36

2.5.3. Matrix Elements over MOs. The matrix element
involving MOs i and j is resolved into a sum of integrals over
basis functions in eq 45,

where the functions{φ} form the atomic orbital basis set and
the c’s are the MO coefficients. This leads to one-, two-, and
three-center integrals. The two- and three-center integrals may
be neglected due to therA

-3 dependence of theê(rA) operator,
eq 6, and the one-center integrals are elementary to evaluate.28b,37

To a good approximation,

with úrs
A ) 〈Rr

A|ê(rA)|Rs
A〉 whereRr

A(r)A is the radial part ofφr

and the Kronecker delta is included to indicate that the integral

(35) Szabo, A.; Ostlund, N. S.Modern Theoretical Chemistry; MacMillan
Pub. Inc.: New York, 1982.

(36) Bacon, A. D.; Zerner, M. C.Theor. Chim. Acta1979, 53, 21.
(37) Mabbs, F. E.; Collison, D.Electron Paramagnetic Resonance of

d-Transition Metal Compounds; Elsevier: Amsterdam, 1992.

|I i
ojSS〉 ) |ψ1ψh 1 ... ψiψh oj

... ψnψh nψo1
... ψom

| (34)

|II oi

aSS〉 ) |ψ1ψh 1 ... ψnψh nψo1
... ψa ... ψh om

| (35)

〈0SS|∑
A,i

ê(riA) lA,p(i) s0(i)|Ii
ojSS〉 )

-
1

2
〈ψi|∑

A

ê(rA)lA,p|ψoj
〉 (36)

〈0SS|∑
A,i

ê(riA) lA,ps0(i)|II oi

aSS〉 )

+
1

2
〈ψoi

|∑
A

ê(rA) lA,p|ψa〉 (37)

Dpq
(0) ) -

1

4S2{ ∑
i(doubly)

∑
oj(singly)

∆I oj
i

-1 Lh1p
ioj Lh1q

ioj

+ ∑
a(virt)

∑
oj(singly)

∆I a
oj

-1 Lh1p
oja Lh1q

oja} (38)

∆gpq ) +
1

2S
∑

i(doubly)
∑

oj(singly)

∆I oj
i

-1{Lh2p
ioj Lh1q

ioj + Lh1p
ioj Lh2q

ioj}

-
1

2S
∑

a(virt)
∑

oj(singly)

∆II a
oj

-1{Lh2p
oja Lh1q

oja + Lh1p
oja Lh2q

oja} (39)

|0SS〉 ) |ψh 1
â ... ψh n

â ψ1
R ... ψn+m

R | (40)

|Ii
aSS〉 ) |ψh 1

â ... ψh n
â ψ1

R ... ψi-1
R ψa

R ψi+1
R ... ψn+m

R | (41)

|II i
aSS〉 ) |ψh 1

â ... ψh i-1
â ψh a

â ψh i+1
â ... ψh n

â ψ1
R ... ψn+m

R | (42)

Dpq
(0) ) -

1

4S2
{ ∑

i(R-occ)
∑

a(R-virt)

∆I a
i

-1 Lh1p
iRaR Lh1q

iRaR +

∑
i(â-occ)

∑
a(â-virt)

∆II a
i

-1 Lh1p
iâaâ Lh1q

iâaâ} (43)

∆gpq ) -
1

2S
∑

i(R-occ)
∑

a(R-virt)

∆I a
i

-1{ Lh2p
iRaR Lh1q

iRaR + Lh1p
iRaR Lh2q

iRaR}

+
1

2S
∑

i(â-occ)
∑

a(â-virt)

∆II a
i

-1{Lh2p
iâaâ Lh1q

iâaâ + Lh1p
iâaâ Lh2q

iâaâ} (44)

〈ψi|∑
A

ê(rA)lA,p|ψj〉 ) ∑
r,s

cricsj〈φr|∑
A

ê(rA)lA,p|φs〉 (45)

〈ψi|∑
A

ê(rA)lA,p|ψj〉 ≈ ∑
A

∑
r,s

cricsjúrs
A〈φr

A|lA,p|φs
A〉 (46)
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vanishes ifφr andφs have different angular momentum quantum
numbers. Theúrs

A may either be approximated by the SOC
constants of the appropriate free atoms or ions or be theoretically
evaluated as considered in section 4.

2.6. Implementation in Terms of CI Wave Functions.A
general and in principle rigorous way to construct the many-
electron wave functions required in the evaluation of eqs 16,
18, 30, and 31 is the method of configuration interaction (CI).
In a CI treatment each Born-Oppenheimer eigenfunction is
constructed by a many-electron wave function of the form

where usuallyM ) Sa and the coefficientsC are assumed real.
Each configuration state function (CSF)Φγ is an antisymmetric
function in the electronic coordinates and consists of an orbital
product built from a set of orthonormal MOs{ψ} and a spin
function. In the most basic case it is a single Slater determinant.
Although expansions of up to more than 107 CSFs become
practical38 in practice, one usually has to work with a severely
truncated set{Φ}. The matrix element of any one-electron
operator,ô, between two CSFs can be written

where the coupling coefficientsΓ depend on the way the
functions{Φ} are constructed. A straightforward way to do this
is the method of bonded functions.20,39-42 Matrix elements
between two bonded functions of the sameS and spin-
independent one- and two-electron operators were worked out
by Boys and Reeves,39 Sutcliffe,40 and Cooper and McWeeny.41

Summaries can be found in the books by McWeeny20 and
Pauncz.42 A computer program to carry out the projective
reduction was reported by Reeves,43 and computational strategies
for CI calculations based on bonded functions have been
discussed.44 The case of spin-dependent one-electron operators
was treated by Manne and Zerner45 and applied to SOC
calculations by Kotzian et al.46 Our present implementation of
the theory is based on this formulation with MOs determined
by semiempirical valence-only methods like the INDO/S model
of Zerner and co-workers36,47 and atomic SOC constants.48-50

The coefficientsΓ are evaluated together with the Hamiltonian
matrix elements during the CI calculation and stored in an

external file. ForSa * Sb Reeves’s algorithm43 cannot be used
to determine theΓ coefficients, and a special procedure was
developed following Manne and Zerner.45 To evaluate the
D-tensor and theg-matrix, this file need only be read once,
and for each set of indicesp, q, γ, andδ the contributions of
each pair of states 0,R to the sum in eqs 16, 30, and 31 are
evaluated. Finally, the fullD-tensor is found by performing the
appropriate sums. Theg-matrix is evaluated according to eq
18 at the same time, as this requires negligible extra effort. The
number of contributing states is defined by either the number
of eigenvectors available from the CI calculation or a given
excited-state energy threshold above which the contributions
are supposed to be too small to warrant evaluation. After the
D-tensor is evaluated, it is diagonalized and the combination
of eigenvectors determined that define a proper coordinate
system. On the basis of this choice theD andE/D values are
assigned.

3. Application to High-Spin Ferric Complexes

The equations given above are general and include all
situations that are likely to be met in practice except for the
case of ground-state orbital degeneracy where a spin Hamilto-
nian approach is not appropriate. This development was driven
by our interest in ferric-active sites in non-heme iron enzymes.
Together with the development of a general MCD theory to be
presented elsewhere,51 the present methodology constitutes a
powerful probe of the electronic and geometric structure of these
sites. It is therefore appropriate at this point consider the factors
that govern the ZFS in high-spin ferric complexes with FeCl4

-

taken as an illustrative example since it has been studied in
detail.16,17

3.1. Approximate Expressions for the ZFSs of High-Spin
Ferric Complexes. The low lying electronic states typically
found in cubic high-spin d5 systems follow from ligand field
theory and are shown in Figure 1. In the6A1 ground state

(38) Siegbahn, P. E. M. InLecture Notes in Quantum Chemistry; Roos, B.
O., Ed.; Springer: Berlin, 1992; pp 255ff.

(39) Boys, S. F.; Reeves, C. M.; Shavitt, I.Nature1956, 178, 1207.
(40) Sutcliffe, B. T.J. Chem. Phys.1966, 45, 235.
(41) Cooper, I. L.; McWeeny, R.J. Chem. Phys.1966, 45, 226.
(42) Pauncz, R.Spin Eigenfunctions. Construction and Use; Plenum

Press: New York, 1979.
(43) Reeves, C. M.Commun. ACM1966, 9, 276.
(44) (a) Roos, B.O. InComputational Techniques in Quantum Chemistry

and Molecular Physics; Diercksen, G. H. F., et al., Eds.; D. Reidel
Pub. Inc.: Dordrecht, Holland, 1975; pp 251ff. (b) Scott, J. M.;
Sutcliffe, B. T. Theor. Chim. Acta1975, 39, 289. (c) Diercksen, G.
H. F.; Sutcliffe, B. T.Theor. Chim. Acta1974, 34, 105.

(45) Manne, R.; Zerner, M. C.Int. J. Quantum Chem. Symp.1986, 19,
165.

(46) Kotzian, M.; Ro¨sch, N.; Zerner, M. C.Int. J. Quantum Chem. Symp.
1991, 25, 545.

(47) (a) Ridley, J.; Zerner, M. C.Theor. Chim. Acta1973, 32, 111. (b)
Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U.
T. J. Am. Chem. Soc.1980, 102, 589. (c) Anderson, W. P.; Edwards,
W. D.; Zerner, M. C.Inorg. Chem.1986, 25, 2728.

(48) Edlen, B.Encycl. Phys.1964, 80.
(49) Bendix, J.; Brorson, M.; Scha¨ffer, C. E.Inorg. Chem.1993, 32, 2838.
(50) Dunn, T. M.Trans. Faraday Soc.1961, 57, 1441.

(51) Neese, F.; Solomon, E. I. Submitted for publication.
(52) This result is due to the configurational mixing between the4T1 states

following from the (e2t23) and the (e1t24) configurations. The large
contribution from the4T1

b state in Table 1 actually comes from the
(e1t24) character in this state.

|RSRM〉 ) ∑
γ

CγRΦγ (47)

〈RSRSR|∑
i

ô(i)|âSâSâ〉 ) ∑
γδ

CγRCγâ∑
pq

Γpq
γδ〈ψp|ô|ψq〉 (48)

Figure 1. Energy levels of a high-spin ferric ion on a cubic ligand
field.

6574 Inorganic Chemistry, Vol. 37, No. 26, 1998 Neese and Solomon



(denoted|0〉) there are five singly occupied MOs of mainly Fe
3d character, and a single-determinantal wave function of the
high-spin type, eq 33, is a reasonable representation for this
state. Since there are no spin-allowed transitions within the d
set the first excited states have quartet multiplicity with a pair
of 4T1 and4T2 states being lowest.53 To higher energies a series
of quartet states follow that usually partially overlap with the
onset of sextet LMCT states in which an electron is promoted
from a mainly ligand-centered MO to one of the singly occupied
Fe 3d based MOs. If the quartet states were all represented by
single determinants of the form

the contribution of these states to the ZFS could be easily
calculated because

therefore from eq 31

In section 4.3 of the paper we will make the connection between
MO and ligand field theory and show that the integralsL1p

ij can
be obtained from eq 45 without introducing further approxima-
tions as

where|di〉 is the Fe 3d part of MOi, Kp
ij is to be interpreted as

a generalized orbital reduction factor that includes the ligand
SOC and a variety of other effects, andúFe is a suitably (but
arbitrarily) chosen free-ion SOC constant. Accordingly, eq 51
becomes

However, single determinants are usually not suitable ap-
proximations to the excited quartet ligand field states, and a
more complete consideration ofDpq

(-1) in high-spin ferric
complexes is necessary.

3.1.1. Contributions from the Lowest Quartet State.In
cubic symmetry the ground state6A1 state can only spin-orbit
couple to states ofT1 symmetry. In a distorted tetrahedral
molecule the lowest4T1 is dominated by the tf e excitations
that are represented by

with η ) π/3. Using these states in eq 31 together with eqs 50
and 52, one finds for the ZFS

Let us assume for the moment that theK’s can be factored into
contributions belonging to individual MOs, i.e.,Kij

p ≈ RiRj. In
perfectly cubic environments symmetry demands that the energy
denominators are equal and alsoRxy ) Rxz ) Ryz andRx2-y2 )
Rz2, i.e., D(4T1

a) ) 0. Nonzero contributions in lower sym-
metries can be mainly traced back to two sources, namely,
distortions that lift the degeneracy of the three quartet states
and changes in covalencies of individual MOs that reflect
differences in bonding interactions.

3.1.2. Contributions from Low-Symmetry Distortions. Let
us initially assume that allK’s are equal to 1 and that the
distortion splits the quartet states in a manner consistent with
ligand field theory:

Here∆e is positive ifψx2-y2 is aboveψz2, ∆t2 is positive ifψxz,yz

is above ψxy, and E0
(a). Using the series (a + b)-1 )

∑i(-1)ibia-i-1, which converges rapidly forb , a, one arrives
at a contribution toD from this mechanism that is given by

Thus, if ∆e is small, this approximation, which is essentially
the same as Griffith’s,19 suggests thatD would be positive if
ψxz,yz is belowψxy (flattened tetrahedron) and negative ifψxz,yz

is aboveψxy (compressed tetrahedron).
3.1.3. Contributions from Anisotropic Covalency.To see

the effect of covalency, one might assumeRx2-y2 ≈ Rz2 ) R,
Rxy ) δ, andRxz ) Ryz ) γ. Equation 57 is then modified to

with xe ) ∆e/E0
(a) and xt2 ) ∆t2

/E0
(a). For the typical case of

negativext2 and smallxe one can also expectδ2 < γ2, and
therefore in this case the effect of covalency on the ZFS is
negative while the distortion gives a positive contribution.

3.1.4. Contributions from Higher Quartet States. This
situation changes for the higher lying4T1 states.4T1

c is mainly
composed of the ef t excitations that give rise to states with
analogous determinantal descriptions. The only difference is that
now ∆e and∆t2 change sign because the one-electron energy is

(53) Sugano, S.; Tanabe, Y.; Kamimura, H.Multiplets of Transition Metal
Ions in Crystals; Academic Press: New York, 1970.

|ψoi
f ψh oj

〉 ) |ψ1ψh 1 ... ψnψh nψo1
... ψh oj

... ψo5
| (49)

〈0|∑
A,i

ê(riA) lA,p(i) s+1(i)|ψoi
f ψh oj

〉 )

-
1

x2

〈ψoi
|∑

A

ê(rA)lA,p|ψoj
〉 ) -

1

x2

Lh1p
oioj (50)

Dpq
(-1) ) (-

1

5/2(2
5/2 - 1))(-

1

2)∑oi,oj

∆oifojj

-1 Lh1p
oioj Lh1q

oioj )

1

20
∑
oi,oj

∆oifojj

-1 Lh1p
oioj Lh1q

oioj (51)

L1p
ij ) úFe Im(〈di|lFe,p|dj〉)Kij

p (52)

Dpq
(-1) )

úFe
2

20
∑
oi,oj

∆oifojj

-1 Koioj

p Koioj

q Im(〈doi
|lFe,p|doj

〉)

Im(〈doi
|lFe,q|doj

〉) (53)

|4T1z
a 〉 ) |ψxy f ψh x2-y2〉 (54a)

|4T1x
a 〉 ) cosη|ψyz f ψh x2-y2〉 + sin η|ψyz f ψh z2〉 (54b)

|4T1y
a 〉 ) cosη|ψxz f ψh x2-y2〉 - sin η|ψxz f ψh z2〉 (54c)

D(4T1
a) )

úFe
2

20[4(Kxy,x2-y2
z )2

E(4T1z
a )

- 1
8((Kyz,x2-y2

x + 3Kyz,z2
x )2

E(4T1x
a )

+

(Kxz,x2-y2
y + 3Kxz,z2

y )2

E(4T1y
a ) )] (55)

E(4T1z
a ) ) E0 + 1/2∆e + 1/2∆t2

(56a)

E(4T1x,y
a ) ) E0 + 1/4∆e - 1/2∆t2

(56b)

D(4T1
a)dist = - 1

5(úFe

E0
(a))2

[∆e + 3/4∆t2
- 1/4∆e∆t2

/E0
(a)] (57)

D(4T1
a)coV = 1

5

úFe
2

E0
(a)

R2[δ2(1 - 1/2xe - 1/2xt2
+ 1/2xext2

)

- γ2(1 + 1/2xe + 1/4xt2
+ 1/4xext2

)] (58)
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increased in the excited state. Therefore the contribution from
4T1

c is

with x′e ) ∆e/E0
(c) andx′t2 ) ∆t2

/E0
(c). It is important to note that

for 4T1
c the covalency and distortion contributions work in the

same direction; that is, for negativex′t2, small x′e, andδ2 < γ2

the effects of both covalency and distortion are negative. Thus,
although4T1

c is typically >10 000 cm-1 higher in energy than
4T1

a, it is likely to make a significant contribution to the ZFS.
The third 4T1 state, 4T1

b, is dominated by the spin-flip
transitions within the t2-set. It does not split to first order with
a geometric distortion but has a small contribution to the ZFS
arising from anisotropic covalency:

3.1.5. Change of States with Distortion.If a geometric
distortion, sayTd f D2d, is present, it cannot necessarily be
expected that the states in eq 54 retain the same determinantal
composition. From group theory4T1

a splits into 4A2 and 4Ea,
while 4T2

a splits into 4B2 and 4Eb. Of these states4B2 cannot
spin-orbit couple with the6A1 ground state,4A2 spin-orbit
couples via thez-component, while the4E states couple via the
x,y components of the SOC operator. Furthermore, the two4E
states are allowed to mix by CI. The4A2 and4Ex

a and4Ey
a states

are represented by eqs 54a-c, and the4B2 and 4Eb states are
given by

The CI effect is described by a deviation of the angleη from
its tetrahedral valueπ/3. Writing η ) π/3 + η′ and performing
a power series expansion inη′, the contributions of the4A2 and
4Ea states are now

Similarly, 4Eb yields the contribution

Defining κ ) 1 - η′2 + 1/3η′4 (η′ measured in radians), the
two contributions can be combined to give

An approximate expression is obtained usingt ≡ E(4Eb) -
E(4Ea).

The CI effect is now entirely contained in the term in{...}. For
small angles,κ is close to 1 so that the effect of the CI is seen
to be a small correction that can be included in the apparent
value forγ2. Thus, ignoring the CI effect will lead to a slight
underestimate of the value ofγ2. However, in the numerical
calculations on FeCl4

- to be presented below we findη′ to be
e 5˚, which gives an apparent reduction ofγ2 of only ≈0.1%.

3.1.6. Influence of CT States.The contribution of the spin
sextet LMCT states can be estimated from eq 38. These
contributions are best calculated numerically for a specific case.

3.1.7. Influence of Ligand SOC. Finally we want to
explicitly include the ligand SOC in the calculation. As will be
shown laterKij

p in eq 52 must simply be multiplied by a factor
Kij

p,lig. If four equal ligands are assumed and for simplicity
overlap is neglected,

(νL ) úL/úFe). Inserting these factors into eq 55 gives explicit
expressions of the additional ligand contributions to the4T1

a

terms in the ZFS expressions. There are terms linear and
quadratic inνL. The linear terms vanish in the limits of either
full (R ) γ ) δ ) 0) or no (R ) γ ) δ ) 1) covalency and
therefore depend on the simultanous presence of ligand and
metal SOC. The terms quadratic inνL are ligand-only in
character and vanish only in the limit of no covalency.

3.1.8. Extension to Distorted Octahedral Sites.The case
of octahedral sites is slightly more complicated because the
anisotropic covalency pattern will differ from the tetrahedral
case. Here it may be assumedRx2-y2 ) R, Rz2 ) â, andRxz )
Ryz ) Rxy ) γ. Instead of eq 58, the contribution from4T1g

a is
now given by

Again, for the typical case of smallxt2g, positivexeg, andR2 <
â2 one has a negative contribution to theD-value from
anisotropic covalency and a positive from the low-symmetry
distortion. The contribution from4T1g

c is given by the same
equation with the signs ofxt2g andxeg reversed.

3.2. Numerical Results for FeCl4-. To probe the relative
importance of the various contributions to ZFS, ROHF-INDO/
S-CI calculations were carried out for FeCl4

- as a function of
a distortion fromTd to D2d symmetry using the SOC constants
úFe ) 397 cm-1 andúCl ≈ 550 cm-1 that will be obtained in
section 4.

The results in Figure 2 show that the ZFS is a nearly linear
function of the distortion angle in the range(10˚ and that it
contains significant contributions from both the ligand field and

D(4T1
c)coV = 1

5

úFe
2

E0
(b)

R2[δ2(1 + 1/2x′e + 1/2x′t2 + 1/2x′ex′t2)

- γ2(1 - 1/2x′e - 1/4x′t2 + 1/4x′ex′t2)] (59)

D(4T1
b) ) 1

10
úFe

2 γ2[ γ2

E(4T1z
b )

- δ2

E(4T1x,y
b )] (60)

|4B2〉 ) |ψxy f ψh z2〉 (61a)

|4Ex
b〉 ) -sin η|ψyx f ψh x2-y2〉 + cosη|ψyz f ψh z2〉 (61b)

|4Ey
b〉 ) sin η|ψxz f ψh x2-y2〉 + cosη|ψxz f ψh z2〉 (61c)

D(-1)(4T1
a) )

úFe
2

5
R2[ δ2

E(4A2)
- γ2

(1 - η′2 + 1/3η′4)

E(4Ea) ] (62)

D(-1)(4T2
a) ) -

úFe
2

5
R2γ2

(η′2 - 1/3η′4)

E(4Eb)
(63)

D(-1)(4T1
a + 4T2

a) )

úFe
2

5
R2[ δ2

E(4A2)
- γ2{ κ

E(4Ea)
+ 1 - κ

E(4Eb)}] (64)

D(-1)(4T1
a + 4T2

a) =

úFe
2

5
R2[ δ2

E(4A2)
- γ2

E(4Aa){1 - (1 - κ)( t

E(4Ea)
- t2

E(4Ea)2)}]
(65)

Kxy,x2-y2
z,lig ≈ 1 - 1/2νLx(1 - δ2)/δ2 x(1 - R2)/R2 (66a)

Kyz,x2-y2
x,y,lig ) Kyz,z2

x,y,lig ≈
1 - 1/2νLx(1 - γ2)/γ2 x(1 - R2)/R2 (66b)

D(4T1g
a ) ) 3

80

úFe
2

E0
γ2[(R - â)(5R + 3â) + R2(17/6xt2g

+

11/4xeg
+ 31/12xt2g

xeg
) + â2(3/2xt2g

+ 3/4xeg
- 3/4xt2g

xeg
) +

Râ(xt2g
+ 1/2xeg

- 1/2xt2g
xeg

)] (67)
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the charge-transfer excited states. The experimental value,D
) -0.042 cm-1,16,17is reproduced at a distortion angle of+2.7˚
compared to an experimental angle of+5.1˚ at room temper-
ature.16,17Since the deviation from cubic symmetry is small and
the ZFS arises as the small difference of several contributions,
better agreement cannot be expected. It is however significant
that the calculations predict the correct sign and order of
magnitude of the ZFS at the experimental distortion angle.

Figure 3 shows the combined6Γ and 4Γ contributions
separated into contributions to metal-only and ligand-only SOC.
For both sets of states it is observed that the ligand-only
contribution to the ZFS is quite small. Despite this, the ligand
SOC is important, as can be seen from the difference between
the metal-only and total contributions. This means that the terms
linear in νCl, i.e., proportional toúClúFe, are important. For the
CT states they have the same sign as the metal contributions,
while for the LF contributions they have opposite sign. Explicit
evaluation of the ligand reduction factors givesKxy,x2-y2

z,lig )
0.969,Kyz,x2-y2

x,lig ) 0.976, andKyz,z2
x,lig ) 0.974. Thus in absolute

terms the ligand contribution is quite small, but since it is
anisotropic, it shifts the balance of terms that very nearly cancel
each other if ligand SOC is neglected (Table 1). The more
biologically relevant N- and O-containing ligands have much

smaller spin-orbit coupling constants than chlorine (νCl ≈ 1.38,
whereasνN,O e 0.25), covalency is usually more limited, and
the ZFS is much larger. Consequently the ligand SOC effects
will not nearly be as prominent as for FeCl4

-. Much like the
contributions of the anisotropic covalency to the metal contribu-
tion to the ZFS, the ligand contributions are negative and oppose
those induced by the geometric distortion (eq 57), the latter being
the only contributions taken into account in Griffith’s model of
ZFS.19

The breakdown of LF contributions to the ZFS in FeCl4
- in

Table 1 shows that the contributions from4T1
a and 4T1

b are
comparable in magnitude and opposite in sign, while that of
4T1

c is much smaller.52 It also follows from Table 1 that
Griffith’s model gives a large contribution of the wrong sign.
Compared to the earlier analysis,16,17 the CT contribution is
calculated to be slightly less negative. The results for the first
ligand-field excited state are also similar, while the balance of
contributions from4T1

b and 4T1
c is slightly changed. The MO

coefficients found from the ROHF-INDO/S calculation areR2

) 0.963,δ2 ) 0.850, andγ2 ) 0.865. Thus, as expected the
σ-antibonding MOs are much more covalent than theπ-anti-
bonding MOs. Compared to the earlier XR-SW results,16,17both
the π- and σ-covalencies are calculated to be smaller, with a
more pronounced difference for theπ-value (0.963 compared
to 0.840 from XR-SW).16,17

In conclusion, the present calculations are largely consistent
with the previous analysis and experimental results for FeCl4

-

and demonstrate the usefulness of the method in the modeling
of ZFS. The extremely important role of covalency for the ZFS
is emphasized. The anisotropy in the covalency not only induces
contributions of opposite sign of those induced by low-symmetry
ligand field splittings but also leads to the appearance of charge
transfer and ligand SOC contributions that are both found to
be important.

4. Change of Metal Radial Functions: Contributions to
the Relativistic Nephelauxetic Effect

There are three main factors that contribute to the apparent
reduction of the metal SOC constant in complexes: (a) the
covalent mixing of metal and ligand orbitals (the symmetry-
restricted covalency in Jørgensen’s nomenclature9), (b) the
ligand spin-orbit coupling, and (c) the change in metal radial
wave function that leads to values ofúrs in eq 45 that are
different from the free-ion values (the central field covalence9).
To evaluateúrs using the operator in eq 6, one needs to know
the radial functions of the contributing atomic orbitals. Explicit
electronic structure calculations are reported in this section to
estimate how these radial functions change upon going from
the free ion to the complex.

4.1. Free-Ion Calculations.Based on eq 6 a linear relation-
ship is expected betweenú3d for a given ion and the respective
〈r-3〉3d values. Therefore, we first evaluate this proportionality
by comparing calculated〈r-3〉3d values with experimentally
determinedú3d’s for Fe ions with different dn configurations.
The 3d radial distribution functions from spin-averaged Har-
tree-Fock54 calculations using a relatively large basis set of
Slater orbitals are displayed in Figure 4 forn varying from 2 to
7 and show the expected increase in diffuseness with decreasing
positive charge of the ion. Since the Hartree-Fock approxima-
tion is well-known to produce one-electron expectation values

(54) (a) Stavrev, K. K.; Zerner, M. C.Int. J. Quantum Chem.1997, 65,
877. (b) Edwards, W. D.; Zerner, M. C.Theor. Chem. Acta1987, 72,
347. (c) Zerner, M. C.Int. J. Quantum Chem.1989, XXXV, 567.

Figure 2. CalculatedD-value for FeCl4- as a function of theTd f
D2d distortion angle and charge-transfer and ligand-field contributions.

Figure 3. Breakdown of charge-transfer (left) and ligand-field (right)
contributions to the total ZFS in FeCl4

- into metal SOC only and ligand
SOC only contributions.
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that are correct to second order, the radial expectation values
from these calculations are quite accurate. For the〈r-3〉3d value
an almost exact linear dependence on the number of 3d electrons
is found (inset to Figure 4). This slightly contrasts with Slater’s
rules that predict a cubic dependence but with very small
coefficients for the quadratic and cubic terms. The empirical
correlation of the〈r-3〉3d values with the experimentalú3d values
determined by Bendix et al.49 is shown in Figure 5. A correlation
coefficient of 0.993 and a standard deviation of 15.7 cm-1 are
obtained. From the slope the reasonable valueZeff ) 14.0 is
calculated for the Fe 3d electrons, compared toZeff ) 13.2 from
Slater’s rules.55 This accuracy is sufficient to make useful
predictions about the variation of the SOC constants found in
molecules based on calculated radial distribution functions.

Since molecular Hartree-Fock calculations are not yet
feasible with a basis set of Slater orbitals, the calculations were
repeated for Fe(III) with a basis of Gaussian orbitals and the
basis was enlarged up to the point where the Slater orbital values
for 〈r-3〉3d were reproduced to≈1% accuracy. In addition to
the UHF method, the B3LYP hybrid density functional model56

was employed. This method is presently thought to be one of
the most accurate electronic structure models and effectively
incorporates dynamic correlation effects that are absent in the
Hartree-Fock model. The values found for d5 from UHF and
B3LYP calculations for〈r-3〉3d are similar (5.669 vs 5.738 au-3).

4.2. Calculations on FeCl4-. The same Gaussian basis was
then employed in molecular calculations onTd FeCl4- at the
UHF, ROHF, spin-polarized- (UB3LYP), and spin-restricted
(RB3LYP) B3LYP levels. The metal 3d parts of the five singly
occupied MOs were evaluated along one of their lobes and
renormalized, and the〈r-3〉3d values were determined by
numerical integration (Table 2). Here we will discuss only the
RB3LYP results.57

Figure 6 shows the iron radial probability distribution
functions that were obtained for the singly occupied metal-based
t2 and e MOs together with the corresponding functions for the
free Fe(I), Fe(II), and Fe(III) ions. The radial functions for the
complex are seen to be considerably more diffuse than those
of the Fe(III) ion and are in fact intermediate between those
for Fe(I) and Fe(II). Importantly there is an increased probability
in the outer valence region that increases the metal-ligand
overlap and aids in the formation of covalent bonds. On average

(55) Atkins, P. W. Molecular Quantum Mechanics, 2nd ed.; Oxford
University Press: Oxford, 1983.

(56) (a) Becke, A. D.Phys. ReV. A 1988, 38, 3098. (b) Becke, A. D.J.
Chem. Phys.1993, 98, 1372. (c) Becke, A. D.J. Chem. Phys.1993,
98, 5648.

(57) The UB3LYP functions are very similar to the RB3LYP ones, while
the ROHF and UHF functions are more intermediate between the Fe-
(II) and Fe(III) functions, consistent with the trends in Table 2 and
the general notion that the HF description of the bonding in transition
metal complexes is too ionic.

(58) Watson, R. E.; Freeman, A. J. InHyperfine Interactions; Freeman,
A. J., Frankel, R. B., Eds.; Academic Press: New York, 1967; pp
53ff.

Table 1. Contributions of Excited States to the ZFS in FeCl4
- at a Distortion Angle of 2.7° As Calculated by the ROHF-INDO/S-CI Methode

state Ecalc
a Dtotal (cm-1) DGriffith (cm-1) Dmetal (cm-1) Dlig (cm-1) Dmixed (cm-1)

4T1
a 15 100 (4A2) +0.070 +0.089 +0.086 +0.001 -0.017

15 773 (4E)
4T1

b b 24 582 (4E) -0.077c -0.021 -0.078 0.000 +0.001
24 990 (4A2)

4T1
c b 30 666 (4E) -0.009 -0.006 -0.002 -0.001 -0.006

31 027 (4A2)
4Γ total -0.016 +0.055 +0.005 0.000 -0.022
6Γ total -0.031d -0.016 -0.002 -0.013

total -0.047 +0.062 -0.011 -0.002 -0.035

exptl -0.042

a Note that these numbers cannot be directly compared to the experimental transition energies since the experimental numbers in contrast to the
theoretical ones contain spin-orbit coupling.b There is considerable configurational mixing among the4T1

b(e2t3) and4T1
c(e1t4) states.c This number

contains a-0.012 cm-1 contribution from the4E state following from4T2
b. d This number contains contributions from many states. There is a

significant amount of electronic relaxation in the CT excited states of FeCl4
- that will be analyzed elsewhere.e DGriffith ) considering the low-

symmetry distortions only.Dmetal ) contributions of metal SOC alone.Dlig ) contributions of ligand SOC alone.Dmixed ) Dtotal - Dmetal - Dlig.

Figure 4. Free-ion 3d radial distribution function for Fe ions with
different dn configurations found from spin-averaged Hartree-Fock
calculations.

Figure 5. Correlation of empirically determined spin-orbit coupling
constants for Fe ions with different dn configurations49 and calculated
radial expectation values〈r-3〉3d.
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the reduction of the〈r-3〉3d values found in the calculations is
≈15% (Table 2). Thus the effect is sizable and should not be
neglected. Interestingly there is also some anisotropy found in
the values obtained for the t2 and e MOs. If the physical origin
of the effect would simply be a reduction in the effective nuclear
charge felt by the Fe 3d electrons due to electron donation by
the ligands, an isotropic reduction would result.59 This discrep-
ancy is related to a fundamental aspect of chemical bonding
that will be taken up in the discussion. In applications to
tetrahedral FeCl4

- the matrix element〈e|r-3|t2〉 is also of
concern. These values are also given in Table 2 and are roughly
intermediate between the expectation values for the t2 and e
MOs.

4.3. Connection to Ligand-Field Theory.In this section an
equation is given that allows one to consider the factors that
contribute to the total reduction in the apparent metal SOC
constant that is commonly invoked in ligand-field treatments.
The equation can be viewed as an anisotropic generalization of
Stevens’ orbital reduction factor,8b,60 although it explicitly
contains symmetry-restricted covalency, central field covalency,
and ligand SOC. Initially the SOC constant of the free metal
ion (úion) is factored out of eq 45:

To simplify the following discussion, a typical nonzero matrix

element is considered under the following assumptions: (a) the
metal contributes only the d orbitals|dr

M〉 andds
M〉 to MOs i and

j, (b) every ligand contributes at most a single p orbital|pr
L〉 to

MO i and |ps
L〉 to MO j, and (c) in crystal field theory the

matrix element would be given byúionl ij
p.

ηi symbolizes the remaining contributions of s orbitals that do
not contribute to the SOC matrix elements. Equation 68 can
then be factored as follows:

where

Equation 70 expresses the anisotropic reduction of the metal
SOC constant by three factors: (a)Kij

p,src is the symmetry-
restricted covalency where the reduction is stronger the less
metal character contained in MOsi andj and the effect is also
sensitive to metal-ligand and ligand-ligand overlap via the
normalization conditions,14f,60 (b) Kij

p,cfc is the central field
covalence and describes the change of metal radial wavefunction
upon complex formation as described in the previous section,
and (c)Kij

p,lig describes the effect of the ligand SOC. The phase
factor Pri ,sj

L that governs the sign of the ligand contribution is
sketched in Figure 7. It is equal to-1 if both ligand parts are
either bonding or antibonding to the metal orbitals and+1
otherwise. It arises from the fact that the orbital angular
momentum of the ligand is opposite that of the metal for
antibonding MOs, while it is in the same direction for bonding
MOs. Thus, the ligand contribution to a matrix element between
aσ-antibonding MO and aπ-antibonding MO is negative, while
it is positive with aπ-bonding MO (i.e., in a situation where L
is π-back-bonding or in CT states where the donor orbital has
significant M-L bonding character). Clearly, the importance
of ligand contributions increases with increasing covalent
bonding and increasing ligand SOC constant, but for many
common donor ligands the effect will be small. We will return
to the interpretation of the individual quantities in the discussion.

4.4. Contributions to the Relativistic Nephelauxetic Effect
in FeCl4-. We are now in a position to give numbers for the
contributions to theKpq values in eq 70. To this end we list the
percentage metal-d character in the t2 and e MOs of FeCl4

-

found by the various theoretical methods in Table 3.61 The
results show the typical trends found in calculations on transition
metal complexes. Namely, the Hartree-Fock results show a
much larger ionic character than the DFT results, especially for
the π type interactions. From the RB3LYP results, the sym-
metry-restricted covalency factor,Kt2,e

spc, is ≈0.78; that is, it
accounts for 22% reduction of the metal SOC constant. From

(59) In spin-polarized calculations the spin-up Fe 3d orbitals are fully
occupied and therefore contribute nothing to covalent bonding, while
the unoccupied spin-down Fe 3d like orbitals are physically meaning-
less and lead to unreasonable results. The occupied bonding spin-
down counterparts are mainly ligand in character. This effect has been
discussed in detail by Watson and Freeman.58 In the spin-polarized
picture, the spin density around the iron is governed by the difference
between a completely filled spin-up 3d shell and a partially covalent
spin-down 3d shell, and the two shells are allowed to indivdually adjust
their radial expansion. On the other hand, in the spin-restricted method
the whole spin density is described by the five metal-based open shell
MOs that therefore have to be covalent to give a realistic description.
Consequently the radial functions of these orbitals lack the freedom
to individually adjust and display the net radial expansion effect due
to covalency more directly. In INDO/S calculations the UHF and
ROHF wave functions have virtually identical energies.

(60) Gerloch, M.; Miller, J. R.Prog. Inorg. Chem.1968, 10, 1.

(61) Here we have neglected the relatively small overlap charges in the
metal-based t2 and e MOs and only integrated over the Fe 3d part of
the wave function.

Figure 6. Comparison of free-ion Fe 3d radial distribution functions
with those calculated for the metal-based t2 and e MOs of FeCl4

- by
the RB3LYP method. Inset: Graphical illustration of the〈r-3〉3d found
for the complex.〈r-3〉3d is equal to the area under each curve.
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Table 2, the central field covalence,Kt2,e
cfc, is slightly smaller

and accounts for an additional 15% reduction. On the basis of
the analysis of Bendix et al.,49 this means that a value ofú3d

≈397 cm-1 is more appropriate if one works with fixed SOC
constants.62 However, this value cannot be expected to be
transferable between different complexes but will depend on

the intimate details of the chemical bonds formed between the
metal and the ligands, as will be pointed out in the discussion.

While the INDO/S calculations showed a small but important
ligand SOC effect of 4-5%, the RB3LYP method tends to give
more weight to this term, basically because theπ-covalency is
predicted to be much larger than by the HF and INDO/S
methods. In the special case of FeCl4

- , the RB3LYP value for
Kt2,e

lig is ≈0.82. As discussed above the ligand SOC effect will
usually be much smaller in complexes with predominantly N
and O ligation. Taken together, RB3LYP predicts a total
reduction of the Fe 3d SOC constant to≈54% of its free-ion
value. While this reduction appears excessively large, it may
be compared to the reduction of the RacahB-parameter in
FeCl4- that amounts to≈54% of its free-ion value based on
the position of the ligand-field exicted4E state.17 The coinci-

(62) On the basis of the more commonly used value for the ferric ion SOC
constant (430 cm-1), one would obtainú3d ≈ 365 cm-1.

Table 2. 〈r-3〉3d for Metal-Based MOs in FeCl4
- Calculated by Various Quantum Mechanical Methodsa

〈Fe- 3dt2|rFe
-3|Fe- 3dt2〉 〈Fe- 3de|rFe

-3|Fe- 3de〉 〈Fe- 3dt2|rFe
-3|Fe- 3de〉

ROHF 5.352 (93%) 5.313 (93%) 5.332 (93%)
UHF 5.194 (92%) 5.216 (92%) 5.205 (92%)
RB3LYP 4.736 (82%) 4.892 (85%) 4.813 (84%)
UB3LYP 4.759 (83%) 4.767 (83%) 4.763 (83%)

a Values in parentheses are % reduction relative to the free-ion values calculated at the same level of theory. For spin-polarized models the
spin-up orbital values are quoted.

Figure 7. Illustration of the phase factorsPL.

Table 3. Fe 3d Character in the Metal-Based MOs of FeCl4
- As

Calculated by Various Quantum Mechanical Methodsa

%Fe 3d t2b %Fe 3d e

ROHF 89.5 97.1
UHF 96.6 98.1
RB3LYP 70.2 86.6
UB3LYP 79.4 82.8
ROHF-INDO/S 83.2 96.3

a For spin-polarized models the spin-up orbital values are quoted.
b Note that the p character in these MOs is<1% and does not affect
our conclusions.
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dence of these numbers is certainly fortuitous since the physical
mechanisms that govern them are different, but the large
reduction ofB suggests that a similarly large reduction inú3d is
not unreasonable.
5. Discussion

5.1. Methodological Aspects.In this study a general and
practical approach to the calculation of ZFSs andg-values in
transition metal complexes was outlined. The inclusion of
excited states of multiplicity different than the ground state
makes the theory more general than previous treatments.20 The
main restriction is that an orbitally nondegenerate ground state
is required, consistent with the use of a spin Hamiltonian (for
example see ref 22). A typical example is provided by distorted
octahedral, monuclear Fe(II) complexes where the ground state
is a barely split5T2g term, and a reasonable approach is to
calculate the magnetic response of the system by diagonalization
of a Hamiltonian that operates in the5T2g manifold.63

One advantage of the formulation given in eqs 16, 18, 30,
and 31 is that it makes no specific assumption about the type
of wave function that is appropriate to describe the system under
investigation. It is therefore applicable from the most elementary
crystal field to the most sophisticated ab initio calculations and
well suited to calculateg-matrices andD-tensors in complicated
bonding situations where single-determinant wave functions are
inappropriate. All that is required for the calculation is to
formulate appropriate approximations to the ground- and
excited-state wave functions for the standard choiceM ) Sand
to evaluate at most three matrix elements between the ground
and each excited state.

Treatments forg-values14a or second-order hyperfine coup-
lings14e are frequently based on single-determinant (or single-
configuration) states and therefore neglect electronic relaxation
in electronically excited states, which is often large in the
excitation and ionization spectra of transition metal complexes.64

CI is a natural and straightforward way to describe this
relaxation, and the present treatment is readily applied to CI
wave functions. Relaxation shows up in CI calculations as a
mixing of CSFs for different electronic configurations so that
more than one pair of MOs contribute to a given matrix element
between two states in eq 48.66 Although the method of bonded
functions was used in this work, the methodology described

here is certainly not restricted to this type of CI calculation,
and alternative approaches to the inclusion of SOC in CI
calculations have been described in the literature.29,67

Some attempts to use density functional theory (DFT) to
computeg-values and second-order hyperfine couplings have
been reported for d1 and d9 systems68 and also for iron-sulfur
clusters.69 In these calculations excited-state electronic relaxation
was neglected. Incompletely solved problems in the application
of DFT methods to second-order properties such as theD-tensors
andg-matrices include (a) the excited states are not orthogonal
to each other and the ground state when calculated by∆SCF
procedures, (b) the DFT wave functions are not eigenfunctions
of the S2 operator, and (c) the DFT single-determinantal wave
functions do not in general describe multiplet splittings correctly.
A promising alternative approach to sum over states methods
is to include the relativistic effects in the self-consistent-field
step, namely, within a coupled perturbed Hartree-Fock ap-
proach20,70or the zeroth-order regular approximation to the Dirac
equation.71

The model outlined here was used in conjunction with the
semiempirical INDO/S-SCF-MO-CI method36,47to gain insight
into the electronic structure and properties of the active sites of
several mononuclear non-heme iron enzymes and synthetic
complexes that model these sites. It has been succesful in
reproducing the sign, magnitude, and rhombicity of the ZFS.
Similarly, the g-values of several Cu(II) complexes were
calculated by the same method with reasonable results.72 It is
however important to check the validity of the approach by
simultanously calculating the absorption spectrum of the
compound under investigation. Without reasonably accurate
transition energies, the energy denominators will give rise to
large errors and any agreement of the calculatedg-matrices and
D-tensors with experimental values would be accidental. In this
context it must be remarked that what is measured are the
perturbed state energies, i.e. including SOC, while the theory
in principle requires the energies of the unperturbed Born-
Oppenheimer states. The difference may not be large in
complexes of the first transition row (several hundred cm-1),
but is another potential source of uncertainty in the analysis.

5.2. The ZFS in High-Spin Ferric Complexes.In the second
part of the paper we have discussed in some detail the subtleties
involved in the calculation of ZFS in high-spin ferric complexes.
The ZFS arises from a balance of several effects of opposing
sign and contains contributions from low-symmetry ligand-field
splittings, anisotropic covalency, charge-transfer states, and
ligand SOC. It is especially important to realize the important
role of covalency in these calculations. Ligand-field theory will
frequently lead to qualitatively wrong results with regard to sign
and magnitude of the ZFS. Covalency not only alters the balance
between the terms entering the ZFS but also leads to the
appearance of charge-transfer and ligand SOC contributions to
the ZFS that can be quite sizable as we have found here for
FeCl4-. Importantly, the ZFS is sensitive to differences in the
covalencies of individual MOs, and therefore an average
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effective modeling of covalency with a uniform reduction of
the SOC constant or a single Stevens orbital reduction factor
will not be appropriate. In addition, the ZFS of distorted cubic
high-spin ferric complexes will in general not be dominated by
the contribution from the lowest4T1 state since for this state
the contributions from low-symmetry distortions and anisotropic
covalency tend to cancel each other.

5.3. The Relativistic Nephelauxetic Effect.On the basis of
the discussion in section 4 there are three main factors
contributing to the apparent reduction in the metal SOC constant
required to explain experimental data, which are (a) the
symmetry-restricted covalency that is directly related to the
covalent mixing of the metal and ligand orbitals, (b) the central
field covalency that is related to the change of the metal radial
wave functions upon complex formation, and (c) the ligand
SOC. Of these, (c) will usually be smallest unless the covalency
is particular high and the ligand SOC constants are very large,
as is the case for ligands beyond the first transition series. The
metal SOC constants are almost invariably fixed at their free-
ion values in the analysis of spin Hamiltonian data, and all
reduction is attributed to symmetry-restricted covalency. This
is the basis of methods that extract MO coefficients from
magnetic resonance data. Often the case of Cu(II), where the
SOC constant changes from 817 cm-1 to 828 cm-1 between
Cu(0) and Cu(II), is invoked to imply negligible charge
dependence of these values. However, this argument is mislead-
ing because the two configurations involved are 3d94s2 and 3d9-
4s0 and the shielding effect of 4s on 3d electrons is very small.

The main point of section 4 is that the change in metal radial
wave function is in fact not negligible compared to the
symmetry-restricted covalency. Thus, MO coefficients extracted
from spin Hamiltonian data will have a tendency to overestimate
the metal-ligand covalent mixing if free-ion values are used
for the expectation values of operators that depend on the metal
radial wave functions, in particular〈r-3〉3d. According to the
calculations presented in section 4, a reduction of up to≈15%
in 〈r-3〉3d can be expected for the metal-based antibonding MOs.
However, this reduction may be different for different MOs,
showing that there is more involved than just a uniform
reduction in the effective nuclear charge felt by the 3d electrons
due to charge donation by the ligands. The origin effect has
been studied with considerable insight by Ammeter73 and can
be understood from Ru¨denberg’s analysis of the chemical
bond.74 According to this theory the destructive overlap in
antibonding MOs leads to an increased gradient of the MO in
the bonding region and consequently raises the kinetic energy.75

The atomic orbitals involved will therefore tend to expand to
decrease the potential energy in order to satisfy the virial
theorem (2〈T〉 ) -〈V〉). The opposite is true for bonding MOs,
where the atomic orbitals will contract. While this argument is
only strictly valid for a one-electron system, the expansion/

contraction effect is usually also found for individual MOs in
many-electron systems73 and therefore appears to be an impor-
tant aspect of chemical bonding. Although the anisotropy of
the 〈r-3〉3d reduction was found to be limited in the present
calculations (≈3% out of≈15%), this need not always be the
case, and more examples need to be considered before the
typical magnitude of the effect can be fully appreciated.

A second point to be recognized is that theg-values will be
more strongly affected than theD-values by the ligand angular
momentum that opposes the metal 3d contribution in antibond-
ing orbitals. The Zeeman matrix elements that involve the ligand
angular momentum, eq 18, are not quenched by theR-3

dependence of the SOC operator and the small SOC constant
of the ligands. In Ammeter’s analysis ofg-values of a series of
Cu(II) complexes this effect accounts for up to 20% reduction
in the g-shift.73 This provides a rationale for the finding15 that
the interpretation ofg- andD-values in some Cr(III) complexes
required substantial reduction of the free-ion SOC constant in
the case ofg- but not in the case ofD-values.

Finally it should be noted that theD-tensor contains contribu-
tions from states of different multiplicity than the ground state,
whereas theg-matrix does not. Thus these two quantities cannot
be related to a common tensorΛ, as frequently done in the
literature.

Taken together the theory outlined here offers a general and
practical approach to the interpretation ofD- andg-matrices in
transition metal complexes. It can be applied to any level of
theory, and when combined with a suitable model of the
compound under investigation, it provides an important link
between theory and experiment and helps to assess the validity
of the theoretical approach.
6. Computational Details

The spin-averaged Hartree-Fock calculations were carried out
according to the formalism developed by Zerner and co-workers54 and
the program Orca developed by F.N. A 9s5p4d basis of Slater functions
(STOs) was employed and all exponents were optimized for each ion
by a quasi Newton procedure until the gradient was smaller than 2×
10-4 hartree/bohr-1. HF and B3LYP calculations with Gaussian orbitals
(GTOs) were then carried out for Fe(III) using the Gaussian94
program.76 For these calculations the d shell in the standard 6-311G
basis set was fully uncontracted, and a Gaussian with exponent 0.25
was added to the s, p, and d sets. To compare radial expectation values
to the STO values, a small program was written to read the Gaussian
output file, project the degenerate components onto pure spherical
harmonics, and evaluate the expectation values. The energy of the GTO-
UHF wave function was higher than that of the corresponding STO-
UHF one by≈2.3 eV, but the expectation values agreed to≈1%. The
same basis set was then used in the molecular calculations onTd FeCl4-.
In these calculations a bond length of 2.195 Å was chosen and tight
convergence requested (SCF) Tight). The metal parts of given MOs
were then evaluated over a radial grid of 256 points and renormalized
and expectation values calculated numerically. The ROHF-INDO/S-
CI calculations for FeCl4

- were also carried out with the program Orca.
Calculations were tightly converged on the6A1 ground state. The active
space in the following Rumer diagram CI on the spin sextets consisted
of all single excitations into the singly occupied MOs and from the
singly occupied into the virtual MOs. For the spin quartets the 24 states
that can be formed within the d manifold were included. In theD-tensor
evaluation all states up to 60 000 cm-1 were taken into account.
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